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There are many flows of practical importance where both Tollmien-Schlichting 
waves and Taylor-Gortler vortices are possible causes of transition to turbulence. In 
this paper, the effect of fully nonlinear Taylor-Gortler vortices on the growth of 
small-amplitude Tollmien-Schlichting waves is investigated. The basic state 
considered is the fully developed flow between concentric cylinders driven by an 
azimuthal pressure gradient. It is hoped that an investigation of this problem will 
shed light on the more complicated external-boundary-layer problem where again 
both modes of instability exist in the presence of concave curvature. The type of 
Tollmien-Schlichting waves considered have the asymptotic structure of lower- 
branch modes of plane Poiseuille flow. Whilst instabilities a t  lower Reynolds number 
are possible, the former modes are simpler to analyse and more relevant to the 
boundary-layer problem. The effect of fully nonlinear Taylor-Gortler vortices on 
both two-dimensional and three-dimensional waves is determined. It is shown that, 
whilst the maximum growth as a function of frequency is not greatly affected, there 
is a large destabilizing effect over a large range of frequencies. 

1. Introduction 
In  laminar boundary-layer flows over a surface, such as a wing, shear-flow 

instabilities in the form of Tollmien-Schlichting waves can occur. These waves are 
the subject of much theoretical and experimental interest since it is thought that 
they cause transition to turbulence. When the flow is over a curved surface, 
centrifugal instabilities such as Taylor or Gortler vortices may also be present. These 
may interfere destructively with the Tollmien-Schlichting waves and thereby delay 
transition. Alternatively, by making the flow three-dimensional, they could play an 
essential part in the process of transition. The interaction of these two types of 
instabilities is therefore of some theoretical importance and has practical applications 
in the development of laminar-flow wings. 

Hall & Bennett (1986) showed that when Tollmien-Schlichting waves travel past 
a curved boundary, an unstable Stokes layer forms on the wall, and it was suggested 
there that the growth of longitudinal vortices in this Stokes layer could destroy the 
Tollmien-Schlichting waves. In  this paper, we consider the opposite problem, 
namely the stability of a Dean (1928) type Taylor vortex in a channel to small- 
amplitude travelling waves. By comparing our results with the stability analysis of 
a channel flow without any vortex motion, we hope to be able to tell whether the 
presence of the vortices hinders or enhances the growth of the Tollmien-Schlichting 
waves. A related problem was studied by Nayfeh (1981) in which Gortler vortices 

15-2 



446 J .  Bennett and P .  Hall 

were allowed to interact with oblique Tollmien-Schlichting waves. There the Gortler 
vortex was determined by solving the parallel-flow linear instability equations and 
had its amplitude assigned arbitrarily. Such a procedure could lead to incorrect 
results because Hall (1982a, 1983) has shown that non-parallel effects cannot be 
ignored in the linear Gortler instability problem. Moreover, a finite-amplitude 
Gortler vortex has its amplitude determined by the Gortler number and cannot be 
specified arbitrarily. Furthermore, in the only case where a non-parallel theory of 
nonlinear Gortler vortices has been given (Hall 1982b), the mean flow distortion 
induced by the fundamental is the same size as the fundamental. In such a situation, 
it is clear that the contribution of the mean flow correction and its harmonics cannot 
be ignored. The channel flow considered here does not vary in the streamwise 
direction, so non-parallel effects do not occur. Bennett (1986), however, has shown 
that our analysis does apply to external non-parallel flows, though results for that 
problem will not be available until the fully nonlinear Gortler problem in external 
flows has been solved numerically. 

We confine our attention to the linear stability of the vortex motion a t  high 
Reynolds numbers. Furthermore, we shall concentrate on the lower branch of the 
neutral curve, so that the Tollmien-Schlichting waves are governed by interactive 
boundary-layer theory. This case describes asymptotically almost all the unstable 
range of high-Reynolds-number disturbances. In $ 2 we derive the dispersion relation 
linking the wave frequency to the wavenumber for waves travelling parallel to the 
main direction of the flow. This is done in a similar manner to Smith (1979a), where 
the stability of unidirectional flow was considered. The difference between that and 
the present work is that there the basic flow varied on a cross-stream (z) distance 
comparable with the long wavelength of the disturbances, whereas the z-variation in 
our basic flow is governed by the shape of the Taylor vortex. In  § $ 2 4  we consider 
‘square ’ Taylor vortices, where the z-variation is comparable with the channel width 
and therefore much faster than the streamwise (x) variation of the waves. In §§3 and 
4 we look a t  two limits of the dispersion relation derived in $2. First, in $3, we look 
a t  what happens when the amplitude of the Taylor vortex is small, so that the vortex 
is governed by the weakly nonlinear theory of Seminara (1976). Secondly, in $4, we 
find how the scaled wavenumber ct of the Tollmien-Schlichting waves behaves when 
the scaled wave frequency SZ is large. In $5  we describe the numerical calculations 
needed to work out the vortex velocity field and to find solutions of the dispersion 
relation. Section 6 extends these results to the case of waves travelling obliquely to 
the flow. Finally, in $7,  we give a discussion of our results and their relevance. 

2. The dispersion relation for small-amplitude Tollmien-Schlichting waves 
in the presence of fully nonlinear Taylor-Gortler vortices 
We take as our basic flow the Taylor vortex that arises in the Dean (1928) problem 

when incompressible fluid is driven between concentric cylinders by a constant 
azimuthal pressure gradient. If the radii of the cylinders are a and a + d ,  then we 
assume that the channel is narrow, that is 6 = d / a  4 1, so that the Taylor vortex is 
an instability of plane Poiseuille flow, driven by centrifugal forces. If (r*,  6*, z*) are 
cylindrical polar coordinates, with r* = 0 corresponding to the axes of the cylinders, 
we define dimensionless coordinates (x, y, z, t )  by 

u, t* t = -  
d ’  d d ’  d R e  ’ 

r * -a  z* 
y=- , z = -  

a6* x=- 
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where the Reynolds number Re = Urn d / v ,  v is the viscosity, Urn is a typical mean flow 
speed and t is a dimensionless time. The dimensionless velocity and pressure of the 
Taylor vortex, (u ,  v, w) and p ,  are given by 

122 
u* = urn , p” =@;(--+q, Re Re2 

and uo = -Y) (2.2) 

is the mean flow driven by the pressure gradient. 

terms of O(6) and O(ReJ2) ,  we get 
Substituting these expressions into the Navier-Stokes equations and ignoring 

where 

The boundary conditions are 

and 1 u = v = w = O  o n y = 0 , 1 ,  
u, v, w periodic in z ,  

(2.4) 

while the Taylor number T has been defined by 

T = 4Re2 6. (2.6) 
The linear instability problem discussed by Dean (1928) can be obtained by 

linearizing (2.3), SO that the right-hand sides vanish, and by replacing slat by u. If 
the Taylor number T is plotted against the wavenumber k for steady solutions of 
Dean’s problem, periodic in z with period 2n/k, an open neutral curve typical of 
convective or centrifugal instabilities is found. Points in (k, T)-space above this 
neutral curve correspond to unstable linear Taylor vortices, whilst those below 
represent Taylor vortices that decay to zero when t - t  co. The critical point of the 
curve is given by T = T, = 5161.86, k = k, = 3.951. Here we are interested in fully 
nonlinear steady solutions of (2.2)-(2.6). These exist in a region above the linear 
neutral curve and are obtained numerically in the manner described in $5. 

We now consider what happens when the Taylor-vortex velocity (2.1) is perturbed 
by high-Reynolds-number Tollmien-Schlichting waves travelling parallel to the 
x-axis. For Re + 1, the components of velocity in (2.1) perpendicular to the x-axis 
become negligible. Smith (1979a) analysed the stability of a unidirectional flow 
depending on two spatial variables y and z near the lower branch of the neutral curve 
when the perturbations vary on a slow x-lengthscale of O(Ref). In  his work, the 
variation of the basic flow in the cross-stream direction z was also on a long 
lengthscale of O(Re$). In this paper, the basic flow varies on a relatively fast O(1) 
lengthscale in z, forced by the behaviour of the Taylor vortex. There are, however, 
circumstances in which the x-variation of the Taylor vortex is of O(ReS), but these 
occur a t  much higher Taylor numbers and therefore are not discussed here. 

Following Smith, then, but taking into account the different z-scales, we write 

c = Re-f, x = e-lX, (2.7) 
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The flow splits up into three regions, an inviscid core, and a viscous critical layer of 
thickness O(e2) on each wall. 

In the core, we perturb the Dean problem as follows: 

I (2.8) 
u*= U , [ ( O , O , O ) + ( E ~ ~ , € ~ ~ " , € ~ ~ ) E +  . . . I ,  

p* = pUL(e43;E + . . .), 
where B(y, z )  = U ,  + u is the velocity of the mean flow and Taylor vortex, 

E = h exp (i(aX-OP)), h 4 1, (2.9) 

and the variables denoted by A are functions of y and x only. On substituting into the 
Navier-Stokes equations, we get 

iazi+v",+zil, = 0, iaB4+v"0,+.LirBz = 0, (2.10a, b)  
- 

ial;iv" = -jU, iaU6 = -$,, (2.10c, a) 

v"=0 a t y = 0 , 1 ,  (2.11) 

with slipping conditions a t  the walls 

and 4,6, & and 3; are periodic in z .  The scalings for 4,v" and 3; are those of Smith whilst 
that for 4 is forced by a comparison of the last two momentum equations (2.10c,d). 
The velocities in (2.10) can now be written in terms of the pressure 

I (2.12) 

Substituting these expressions into the first momentum equation (2.10b), we get 

(2.13) 

where V2 is the two-dimensional Laplacian operator defined in (2.4). The boundary 
conditions (2.11) together with the fact that B vanishes a t  both walls imply that 

6, = &,y = $, = 0 a t  y = O , I .  (2.14) 

It can be shown from (2.13) and (2.14) that the core problem does not specify $ 
uniquely, since for any solution of (2.13) and (2.14) we can add on and multiply by 
arbitrary constants to get another solution. Thus $ is determined by the interaction 
between the core and the viscous layers at y = 0 , l .  

If 3; = $I is a solution of (2.13) and satisfies the boundary conditions 

$ = O  a t y = 0 ,  $ = l  a t y = l ,  (2.15) 

then it can be shown by series expansions in y and (1 - y) that @ = $ also satisfies the 
boundary conditions (2.14). Hence 

3; = $0 -k ($1 -A) 4 
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is also a solution of (2.13) and (2.14) for arbitrary constants $, and$, and is therefore 
the general solution. 

As we move into the lower boundary layer, the core pressure and unperturbed 
velocity are such that 

$-tfio+O(y3), O+h,(z) y as y+O. (2.16) 

Hence from (2.12) the disturbance velocities are such that 

z2+Ao(z), 8-t -iaA,y, 4 - O(y2) as y+O. (2.17) 

The displacement term A ,  satisfies 

W 2 h , A ,  = w -$o) &&/=o. (2.18) 

The core velocities and pressure behave in a similar manner to (2.16)-(2.18) as we 
move into the upper boundary layer. 

In  the lower boundary layer, we write 

y = €2Y, 

U* = U,[(e2h0 Y ,  0 , O )  + (2.12, e5v”, e 3 6 )  E . .  .I, 
p* = pUf[(e4$, + e6g0 + . . .] E ,  

which, ignoring terms of O(h2),  leads to the equations 

iati+v“,+@, = 0, (2.19 a )  

(2.196) 

i(-Q+ah, Y ) 6  = -ijooz+6yy, ( 2 . 1 9 ~ )  

$5, = const., (2.19d) 

go = go(Z)1 (2.19 e )  

C = v ” = G = O  o n Y = O ,  (2.20a) 

.12+A,, G+O, @,+$, as Y + m ,  (2.20 b) 

(2.20 c) 

i(-52+ah0 Y)d+h,v”+h,, Y 6  = -ia~,+S,,, 

with boundary conditions 

3,v”,6, ij, periodic in z .  

The scalings of ti, v“ and come from matching with the core whereas the scalings 
for 6 and go have been chosen as large as possible. These two terms will be driven by 
matching with higher-order terms in the core and are not specified uniquely by (2.19) 
and (2.20). Equations (2.19) are different from the usual linearized boundary-layer 
equations because the cross-flow (w) momentum equation is driven by a much 
smaller pressure term, p,, than the streamwise u-momentum equation. The velocities 
generated by this small pressure are important a t  leading order because of the fasi- 
z derivatives. Following Smith (1979a), ( 2 . 1 9 ~ )  can be solved for 6 in terms of ij,, 

where 

(2.21) 

(2.22) 
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and Ai is the Airy function that satisfies Ai" = [Ai. Eliminating v" between ( 2 . 1 9 ~ )  
and (2.19b) by differentiating (2.19b), substituting for 6 from (2.21) and solving for 
4 we get 

(iaA,)&+ = - A  0 @oz, M'(5) + ihoz 4 0 ,  

31M'([)+$M"''([)-2Air([) +BAi([), (2.23) 

where the constant B is determined by the outer boundary condition on 4 in 
(2.20), 

(2.24) 

From matching with the core 9, = $, and putting Y = 0 in (2.19b) and using (2.23) 
and (2.24), we get an expression for j50 in terms of go and A,. Substituting for A ,  from 

The problem in the upper critical layer at y = 1 is the same as that a t  y = 0 with 
(h,(z), A , , @ , , ~ l , $ l )  instead of ( h , ( z ) , A , , ~ o , ~ o , $ , )  in (2.19)-(2.24), and with (2.18) 
replaced by 

(ia)2h,A, = -i($1-$0) $yyylY=l' (2.26) 

This leads to 

@lZZ + $1 @I, = a"1 +i ($o  --A) $,,,I,=l 
(iahl);K([l) ' 

In the limit as a/& + O(Re-f), go,  and gl would tend to @, and 9, so that (2.25) and 
(2.27) would become the coupled second-order differential equations of Smith 
( 1 9 7 9 ~ ) .  Our equations as they stand are easier to deal with as they are only first- 
order differential equations in go, and @,,. Integrating (2.25) once and using the 
periodicity condition (2.20 c) gives 
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Integrating (2.27) gives a similar equation for @o and @, involving cl, and on 
eliminating 3, and 3, from these two equations we obtain 

J o  L J o  

This is the dispersion relation or eigenrelation, giving a in terms of Q for high- 
Reynolds-number, linear Tollmien-Schlichting waves. It applies to any uni- 
directional flow ( u ( y ,  z ) ,  0,O) so long as the period of the z-variation 2xlk < Re?. Thus 
the eigenrelation is also applicable to high-Reynolds-number flows in pipes of finite 
cross- section. Here z would correspond to distance measured around the pipe. 

Three stages are needed to work out values of (a, Q) on the curve given by (2.28) 
for the Taylor-vortex case 0 = Uo+u: 

(i) First, for a given Taylor number T we must find a steady solution of (2.2)-(2.4) 
and hence 0; 

(ii) Once 0 is known we can determine the core pressure 4 by solving (2.13) and 
(2.15); 

(iii) Finally we can solve (2.28) with to, t1 and $, given by (2.22), (2.25) and 
(2.27) and A, and A, given by 

3. Weakly nonlinear theory 
In order to find nonlinear solutions of the vortex equations (2.2)-(2.5), we need to 

use a numerical method, as in $5. However, when the Taylor number is only slightly 
greater than the critical linear Taylor number T,, the amplitude of the vortices is 
small and solutions of (2.2)-(2.5) are described by the weakly nonlinear theory of 
Seminara (1976). We now apply our dispersion relation (2.28) to Seminara’s velocity 
profile. The results we obtain indicate how the stability of the flow is affected when 
the flow becomes slightly three-dimensional and will provide a useful check on the 
full nonlinear calculations of $5. The weakly nonlinear velocity in the streamwise 
direction is given by 

0 = u, + dU, cos kz  + dyU2, + u22 cos 214 + o ( 4 .  (3.1) 

Here the vortex wavenumber k is the critical one for linear vortices, k = k ,  = 3.951, 
and the vortex amplitude d is related to the Taylor number by 

d = 0.1725(F) T-T, < 1. 

The velocities ul, u2, and u22 are given by Seminara (1976) and are independent 
of 2. 
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The solution of the pressure equation (2.13) with boundary conditions (2.15) is 
then forced to behave in a similar manner to (3.1): 

$ = $o+d$l c o s k z + d 2 ( $ 2 0 + ~ 2 2  cos2kz)+O(2l3). (3.3) 

Here we are only interested in the leading-order effects of the vortex on the 
dispersion relation. Since the integral of cos kz over a period is zero, the fundamental 
O(d)-terms will only appear as a product with other O(d)-terms and so will only 
have an O(d2)  effect. Hence we must also take into account the mean flow correction 
terms u20 and $20. By a similar argument the first-harmonic kerms O(d2) cos 2kz will 
only have an O(d3) effect, and so are ignored here. Substituting (3.3) into (2.13) we 
find that the pressure term $ can be found from the following: 

$o = 6y5 - 15y4 + 10y3, 

$ 2 0 ~  = 5($u0 U20 4- $lY - U1 -gut, 
UO 

where 

(3.4) 

and that the fundamental pressure term $1 is governed by 

(3.5) 

If we write the skin friction a t  the walls as 

A,  = ?Jyly=o = 6+dp1 c o s k z + d 2 ( p 2 , + .  . .), 
hl = - U J  y-o = 6 + d ~ ,  cos kz + d2( v~~ f . . .), 

(3.6a) 

(3.66) 

then from (3.4) the pressure terms we need to evaluate the dispersion relation are 

We can define a mean value for Eo, t1 by writing 

and substituting (3.6a) into the definition of +o, (2.25), we find after some 
simplification that the integrating factor in (2.28) becomes 

1 
0 65 

exp[ [+odzl] - -j: [ l - + l p l G  coskz+O(d2)], (3.9a) 

where 

Also, the rest of the integrand in the eigenrelation can be written as 

(3.96) 

1 Ai’(5) 
K(co) ( id , ) ;  (6ia)i K([ )  

N-- [ 1 -&,LIP, Fl cos kz + d2(&p; F2 - &pz0 FJ], (3.10a) Ai‘(50) 



where 

and 
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(3.10b) 

(3 .10~)  

Combining these results we can evaluate the part of (2.28) corresponding to the lower 
boundary layer : 

Using a similar result for the other half of (2.28), we get the following eigenrelation : 

where we have used the result puz0 + uuz0 = 0. 
This can be simplified further by writing 

where a. and to satisfy the channel-flow eigenrelation 

( 6 i ~ o ) ~ w ~ c o )  = 1, 
60Ai’ ( f o )  

valid when d = 0. In  this case (3.11) reduces to 

-2C (Fl+6)-l, (3.12) I + ~ ~ l # l y y y l y - o + ~ l # l y y y l y - l ~ ~ ~ - ~ ~ ~ - ~ )  

360 

where F,, F, and G are now evaluated a t  5 = co instead of 5. 
The constants in (3.12) are obtained from Seminara (1976) and by solving (3.5): 

p2 + u; 1- - 8.072, 
36 
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FIGURE 1. The wavenumber predicted by the weakly nonlinear theory and corresponding 

asymptotic results for large values of a. 

We now choose to look only a t  the spatial stability of the vortex motion; that is 
for a given real frequency D we solve (3.12) numerically to find the wavenumber. If 
ai, the imaginary part of the wavenumber, turns out to be positive, then the resulting 
waves decay downstream as x + co , whilst if ai < 0 the waves will grow exponentially. 

Figures 1 and 2 show a, and ai plotted against Q for A2 = 0, 0.01, 0.02 
corresponding to Taylor numbers of T = T,, 1.33TC, 1.67TC. The general pattern is the 
same in all three cases. For the frequency less than some critical value Q, (depending 
on the Taylor number), all disturbances decay. At D = D,, ai = 0 so that linear 
disturbances neither grow nor decay. This point corresponds to the asymptotic limit 
of the lower branch of the neutral curve. For D > Q, all waves grow and, as D + co, 
(ai) decays to zero since we are tending towards the upper branch of the neutral 
curve. Disturbances corresponding to the upper branch occur on different length- 
and timescales to the lower-branch disturbances, so that in an analysis near the 
upper branch x and t would be scaled on different powers of the Reynolds number to 
(2 .7 ) .  Thus however large 52 is we shall never actually reach the upper branch where 
cti = 0. The results of figure 2 show that the vortices have negligible effect on the 
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FIGURE 2. The growth rates predicted by the weakly nonlinear theory and the corresponding 
asymptotic results for large values of Q. 

neutral frequency Q, and that the growth rate over a band of frequencies is 
significantly increased. This corresponds to a destabilization of Poiseuille flow by the 
vortices. We shall see that this trend is also found when the fully nonlinear problem 
is solved numerically. 

4. The high-frequency limit, Q-t 00 

In this section we determine the asymptotic behaviour of the eigenrelation (2.28) 
when Q +  co. The result we obtain, (4.9), is a generalization of the standard 
behaviour of high-frequency waves in a channel. We assume that Q/a;-t co as 
Q + 00, which means that 5, and 5, + 00. This can be checked a t  the end of the 
calculation. First we need two results giving the behaviour of the Airy function, its 
derivative, and its integral for large arguments. Writing Ai (s) = Ai"/s and 
integrating by parts, we find 

Air (5) Ai 2Ai' 
K(5)  = lCwAi(8)ds - +... as[+co. 

5 t2 t4 
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Also it is known (see e.g. Abramowitz & Stegun 1965) that the ratio of the Airy 
function to its derivative is given by 

Ai - - -6-i 
Ai' 

as (+ CO. 

Using these two results we can calculate the asymptotic behaviour of each term in 
(2.28). So from (2.25) using (4.1) and (4.2) we get 

"n.,.(l+l:+-) 1 ast-t.co, 
$0 -- 

and using (2.22) we can write this as 

Hence the integrating factor 

dz 2n 01 
so that as (+ co 

Also from (4.1) and (4.2) 

Combining this with (4.3) gives 

(4.4) 

(4.5) 

Substituting (4.4) and (4.6) together with similar expressions involving 6, into the 
dispersion relation (2.28), we obtain 

where 
'Ik dz 2nlk 

G i = l 0  f l  dz, L t = [  x, i = O , 1 .  
y-i 

We can now obtain an asymptotic series for a in inverse powers of SZ from (4.7) in the 
form 

a - C, Q; - ein14~ 2 >  Q-% (4.9) 

where 3 - -  -+A , c2=-(-+ n "0 3 ) #  ("' Lo " )  L, 3kC, Li Li 

(We note here that SZ + 60 implies that to, t1 + 60 as assumed earlier.) 
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Thus the imaginary part of a decays to zero like some constant times Q-;. The 
actual value of this constant depends on the vortex profile through the constants 
C, and C,. We now determine these constants for vortices governed by the weakly 
nonlinear theory described in 93. If the velocity is given by (3.1), we find that 

and 

with a similar formula for L, but with v replacing p. Hence 

c =- 2o ( 1--  ?jA2(2C+’%)), 
Cl 

so that the asymptotic form for the growth rate is given by 

(4.10) 

This asymptote is plotted in figure 2 for various values of A along with the 
corresponding weakly nonlinear dispersion relations. The asymptotic form (4.10) is 
seen to accurately predict ai over a wide range of frequencies and thus provides a 
useful check on the calculations of 93. 

5. The numerical calculation of a finite-amplitude Taylor vortex 
Here we describe how we integrated (2.3) numerically to find the finite-amplitude 

Taylor vortex whose instability we wish to determine. The method used is essentially 
that described by Rogers & Beard (1969) who investigated numerically the classical 
Taylor problem driven by the motion of the inner cylinder. Rogers & Beard solved a 
system similar to (2.3) by Fourier expanding u and v in the z-direction and using 
finite differences in the radial direction. Later Fasel & Booz (1984) performed related 
calculations using finite differences in both directions. The method of the latter 
authors is apparently the most efficient a t  very high Taylor numbers where jet-like 
structures develop along the cylinders. Here we do not perform calculations a t  such 
high Taylor numbers, so we use the method of Rogers & Beard. 

Thus the velocity components in (2.3) are expanded as 

I 
m 

u = u,+C u,(y, t )  cos knz, 
1 

1 

m 

v = C v,(y, t )  cos knz, 

w = C wn(y, t )  sin knz. 
m 

1 

Here we have anticipated the usual result that the only mean flow generated by the 
vortex is in the streamwise direction. The expansions (5.1) are then substituted into 
(2.3), and the coefficients of cosknz are equated to give an infinite sequence of 
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5000 10 000 15 000 20000 25 000 
T 

FIGURE 3. The functions E l ,  E,, E,, E,  at  different Taylor numbers. 

coupled nonlinear differential equations for {u,} and {w,}. Thus for example the 
equation for uo is 

We obtain steady-state solutions of (2.3) by integrating forward in time from some 
appropriate initial guess. At Taylor numbers close to the critical, the initial guess can 
be taken to be the weakly nonlinear state described in $4. At high Taylor numbers 
the initial guess was taken to be the equilibriated solution from a previous 
calculation a t  a lower Taylor number. 

A fully implicit scheme was used to march forward in time. Hence if At is the time 
step and h the step length in the y-direction we obtain a stable scheme for At - O(h).  
The nonlinear terms on the right-hand side of the disturbance equations were always 
evaluated explicitly. The number of Fourier modes and intervals in the y-direction 
required to achieve a solution sufficiently accurate for our purpose depends on the 
ratio TIT,. I n  order to monitor the energy in different harmonics, we followed Rogers 
& Beard and defined 

The number of axial modes required was varied until the converged values of E,, 
F, achieved sufficient accuracy, Similarly the step length h was varied until E,, F, 
converged to sufficiently accurate values. For the calculations reported here, it was 
found that eight axial modes and h = 0.01 were sufficient to enable us to determine 
the dispersion relation to the accuracy indicated in $ 7 .  In figures 3 and 4, we show 
the dependence of E, and F, on T €or k = k, = 3.951, the most dangerous Taylor- 
vortex mode. We see that a t  sufficiently small values of {T/T, - 1) the results are 
consistent with the weakly nonlinear results which can be derived from Seminara 
(1976). 

Once the Taylor vortex has been computed, the wavenumber a(S2,T) can be 
calculated using the procedure outlined a t  the end of $2. The functions required in 
the calculation were evaluated from the series or asymptotic expansion of Ai 
depending on the size of the argument. The wave-flow equation (2.13) was solved 
by a finite-difference method together with an iteration procedure to evaluate the 
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FIGURE 4. The functions Fo, F,, F,, F3, F, at different Taylor numbers. 
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FIGURE 5. The shear stresses A, and A, as functions of z for T = 11000, k = 3.951. 

terms involving z-derivatives. In  figures 5 and 6, we have shown the functions A,(z), 
A,(z), #vvy(O,z), #vvy(l,z) obtained from such a calculation a t  T = 11000. We recall 
that a t  T = T,, A, = A, = 6, #yyv(O, z )  = c$yyy(l, z )  = 60 so that even a t  about t'wice 
the critical Taylor number the vortices have a significant effect on the wave-flow 
problem. The integrals in (2.28) were evaluated by solving ordinary differential 
equations related to (2.25) and (2.27) rather than performing the double integrations 
numerically. We postpone until $7 a discussion of the results obtained at  higher 
Taylor numbers. The calculation of the finite-amplitude Taylor vortex beyond 
T - 27000 was not possible because it is apparently unstable to another Taylor- 
vortex mode with wavenumber 2k,. The mode could of course be found for T > 28000 
by solving the steady-state equations, but such a calculation was not carried out. 
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FIGURE 6. The functions #yyy(O,z),  # u u y ( l , z )  for T = 11000, k = 3.951. 

6. Oblique waves 
The method used to obtain the dispersion relation in $ 2  can be extended to deal 

with Tollmien-Schlichting waves travelling at an angle to the main direction of flow 
of the Taylor-Gortler vortex. In  this case, the perturbation velocities and pressure 
will depend on the slow Tollmien-Schlichting cross-stream coordinate ez,  as well as 
the relatively fast vortex coordinate x .  I n  the boundary layer, this forces a much 
larger pressure gradient in the z-direction which alters the structure of the flow 
there. 

In the core, then, the perturbation scalings (2.8) remain the same, but (2.9) is 
changed to 

This leaves the core-flow problem ( 2 . 1 0 ~ 4 )  unchanged and leads to the same 
matching conditions (2.16) and (2.17). However, because of the z-dependence in 
(6.1), the pressure gradient has a component in the z-direction of O(e5) in the 
boundary layer, as opposed to O ( 8 )  beforehand. This then forces the following new 
scalings in the boundary layer : 

y = e2Y, p* = p U ~ [ e 4 p , + e 5 p 1 ( ~ ) + e 6 p 2 ( z ) +  . . . I  E ,  
u* = U,[(E2ho Y, 0 , O )  + (euo + €2U1 + . . . > E4V0 + €5V1 + . . . , 2w0 + E3W1 + . . .)El. 

Substituting the above into the Navier-Stokes equations and linearizing, we obtain 
the following two sets of equations: 

( 6 . 2 ~ )  

(6.2b) 

( 6 . 2 ~ )  

(6 .2d)  

(6 .2e)  

i( - SZ + ah, Y) U ,  + A,, v0 + A,, Yw, = 

iau, + v o y  + woz = 0, 

i( - SZ + ah, Y )  w, = - ipp, -pl ,  + woyy ,  

u, = vo = w, = 0 

u,,w,,-fO, p,=$, asY-too,  

on Y = 0, 



i(-L?+aah, Y)u,+h,vl+h,, Yw, = -iapo+ulyy, 

i(-Q+aA, Y)wl = -iPpl-paz+wlyu, 

u, = v1 = w1 = 0 on Y = 0, 

equivalent of (2.25) : 
(PlZ +iPPO)Z + 1CrO(Pl, + iPP0) = 0. 

(6.3b) 

) ( 6 . 3 ~ )  

( 6 . 3 d )  

By adding (/3/a) x ( 6 . 2 ~ )  to (6.36), we find that (6.3) are also the same equations 
as (2.19) and (2.20), but this time (&a, 65) are replaced by (ul + (P/a) w,, vl, wl), and 
(ia@,, q,,, x,) are replaced by 

( iaPo+-hz+iPPo)j  P a iPPl+P,,,A,)~ 

In the case p =  0, equations (6.3) reduce to those for the two-dimensional 
disturbance, while (6.2) have the trivial zero solution. 

Thus the leading-order boundary-layer flow is driven solely by a cross-stream 
pressure gradient (pl, + @Po) which arises because the oblique Tollmien-Schlichting 
wave has a pressure component perpendicular to the direction of the undisturbed 
flow. The dispersion relation is determined from the second-order equations in 
a manner similar to before, but using a skewed velocity and pressure gradient, 
(a1 + (@/a) w,) and (icy, + (P/a) (plz + ipp,) to take into account the leading-order 
flow. Hence, for the case ,!3 =+ 0, we obtain the following equation instead of (2.25) : 

Substituting for p, ,  from (6.4), using the definition of A,, (2.18), the condition for 
periodic solutions of (6.5) becomes 

$,+~(~,--$,)fi,, (6.6) 

where I , ,  J ,  and H ,  are the integrals 

(6.7) I I ,  = & r'' exp [ [ 1 ~ r ~  dz] dz, 
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As in $ 2 ,  we can obtain a similar expression to (6.6) from the boundary layer in the 
upper wall y = 1. Eliminating $, and between these two equations and simplifying 
leads to the dispersion relation 

+ 
where the integrals I,, J ,  and H ,  are defined in a similar manner to (6.7) but involving 
the variables El, A,, etc., corresponding to the upper boundary layer. 

It can be seen that in the case p = 0 (6.8) becomes the dispersion relation for two- 
dimensional disturbances (2.28). In  the case of a two-dimensional flow with no vortex 
motion, we obtain I ,  = I ,  = J ,  = J l  = 1 and H ,  = H ,  = Ai’ ([)/(iaA)iK(LJ, so that 

Ai‘ (8 (6.8) would reduce to 
(a2+/32) = 

(iaA)iK (5) 
which is, of course, the usual eigenrelation for three-dimensional disturbances. We 
can also find the asymptote of (6.8) as SZ + 00 in a manner similar to that outlined 
in $4. If 

P Y=; 
is real then (4.9) still holds: 

a - c,sz+-~~P/~c~sz-% as a+ 00, 

but now the constants C, and C, are defined by 

where @, and are given in $4 and 

L .  3 ,  n =/:’AYdz, j = O ,  n = - l , 1 , 2 .  

We postpone a discussion of the numerical results we have obtained for this 
eigenrelation until the next section. 

7. Results and discussion 
We shall concentrate our attention on the effect of longitudinal vortices on the 

growth rate of Tollmien-Schlichting waves. Though there is some interest in the 
effect of the vortices on the neutral curve for the Tollmien-Schlichting wave, it is the 
effect of the vortices on the growth rates which will be most relevant to the closely 
related external-boundary-layer problem. In any case our calculations indicate that 
large-amplitude vortices have little effect on the neutral configuration whilst even 
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FIGURE 7 .  The wavenumber a, as a function of Q for several values of T with /3 = 0. 

small-amplitude vortices significantly alter the growth rates in the unstable 
regime. 

In  figures 7 and 8, we show the wavenumber and growth rate of two-dimensional 
Tollmien-Schlichting waves at  different values of the Taylor number T .  The results 
shown correspond to k = k,  = 3.951 the critical wavenumber of linear theory for 
Taylor-Gortler vortices. The vortices have little effect on the neutral frequency and 
the size of the largest amplification rate. We see in figure 8 that a t  most frequencies 
the amplification rate increases monotonically with T .  For T > 27000 the Taylor 
vortex could not be calculated because it was apparently unstable to a vortex with 
twice the spanwise wavenumber of the most dangerous mode of linear theory. The 
frequency corresponding to tjhe maximum growth rate increases with T .  Moreover, 
the growth rates beyond the maximum are significantly increased for Q less than 
about 100. This result is of particular importance to the control of external boundary 
layers if a similar result holds for such flows. Certainly the known similarities 
between the lower-branch structures for Poiseuille flow and Blasius flow make that 
likely, but there are difficulties in applying the theory to  external flows. The major 
difficulty is surprisingly not the effect of boundary-layer growth, which can be taken 
care of as in Smith (1979 b ) ,  but the lack of a nonlinear theory for Gortler vortices in 
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FIGURE 8. The growth rate a, as a function of Q for several values of T with p = 0. 

growing boundary layers. Thus, though our approach of $ 3  is readily applied to 
external flows, the absence of any knowledge of even weakly nonlinear Gortler 
vortices at O( 1) wavenumbers prevents us from completing such an investigation. 

For external flows, the local Tollmien-Schlichting frequency increases as the wave 
travels downstream and the growth rate adjusts locally. Thus the total growth of the 
disturbance can be found by integrating the growth rate in the streamwise direction. 
In this context the increased growth rates shown in figure 8 to the right of the 
maximum are possibly significant. As a measure of the destabilization produced by 
the vortices, we can calculate the area between the different curves and the tli = 0 
axis for 20 < Q < 100. Such a calculation shows that for T > 11000 the area is 
about 10% greater than that for Poiseuille flow. Thus for external flows which can 
support Gortler vortices it is possible that their presence might cause the premature 
growth of Tollmien-Schlichting waves. The effect of finite-amplitude vortices on the 
Tollmien-Schlichting wavenumber is shown in figure 7. The wavenumber increases 
monotonically with T, but the rate of increase is very small between T = 19000 and 
27 000. 

In figures 9 and 10 we compare the results for the weakly nonlinear theory when 
A = 0.145 with the fully nonlinear vortex calculations a t  the corresponding Taylor 
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FIGURE 9. The wavenumber a, as a function of L? for T = 8800 compared with the 
corresponding weakly nonlinear prediction. 

number T = 8800. These figures show reasonable agreement for all values of Q. 
Figure 11 shows how the critical frequency of the Tollmien-Schlichting waves, Q,, 
varies as the Taylor number is increased from T, to its maximum value of 27 000. Also 
shown is the behaviour predicted by the weakly nonlinear theory, which is accurate 
for T up to about 7000, A = 0.1. 

The dispersion relation for oblique Tollmien-Schlichting waves is shown in figures 
12 and 13 for T = 11000 and for /3/a = 0, 1 / 4 3 ,  1 ,  4 3 ,  corresponding to waves 
travelling parallel, a t  30°, 45" and 60' to the direction of the flow. The results are 
qualitatively the same as the situation when there are no vortices present : the waves 
travelling parallel to the flow having maximum growth rate. 

We should note that for the channel problem Tollmien-Schlichting instabilities 
might be expected to occur first a t  finite Reynolds numbers. For external flows this 
is also possible, but there it seems more natural to make a high-Reynolds-number 
approximation since there would not be a boundary layer unless the Reynolds 
number were large. Thus it might be argued for external flows that the most 
significant linear instability calculation is one that calculates the amplification rates 
between the upper and lower branches of the neutral curve. Since the motivation for 
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FIGURE 11. The critical frequency of the Tollmien-Schlichting waves Q, plotted against the 
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FIGURE 12. The wavenumber a, as a function of SZ for T = 11000 with P/a = 0, 1/2/3, 1, 2/3. 

our calculation was to shed light on the possible effects of longitudinal vortices on 
Tollmien-Schlichting waves in boundary layers, we feel that a large-Reynolds- 
number assumption is sensible. We note however that a t  finite Reynolds numbers the 
normal and spanwise velocity components of the longitudinal vortex are no longer 
negligible and the z-dependence of the vortex does not become parametric in any 
region of the flow. Thus a t  finite Reynolds number the computations required would 
be significantly larger than those discussed here. 

Our aim in this work has been to find the effect of finite-amplitude longitudinal 
vortex structures on the growth of infinitesimal Tollmien-Schlichting waves in 
curved channel flows. We have ignored the possibility that the vortices become 
unstable to time-dependent non-axisymmetric vortex modes of the type that lead to 
the onset of wavy vortex flows in the Taylor problem. We note that Hall (1982 b)  has 
shown that such disturbances occur in external flows over curved walls so this 
possible mechanism for the onset of a time-periodic secondary instability should not 
be ignored. However, if the latter mode does indeed occur in curved channel flows, 
the question of whether it or Tollmien-Schlichting waves are the cause of the 
secondary instability of Taylor-Gortler vortices can only be answered by a nonlinear 
analysis. 
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FIGURE 13. The growth rate a, as a function of Q for T = 11000 with P/a = 0, 1/2/3, 1 ,  2/3. 
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